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The Development of the
Idea of Proof
Leo Corry

1 Introduction and
Preliminary Considerations

In many respects the development of the idea of proof
is coextensive with the development of mathematics
as a whole. Looking back into the past, one might
at first consider mathematics to be a body of scien-
tific knowledge that deals with the properties of num-
bers, magnitudes, and figures, obtaining its justifica-
tions from proofs rather than, say, from experiments
or inductive inferences. Such a characterization, how-
ever, is not without problems. For one thing, it imme-
diately leaves out important chapters in the history
of civilization that are more naturally associated with
mathematics than with any other intellectual activity.
For example, the Mesopotamian and Egyptian cultures
developed elaborate bodies of knowledge that would
most naturally be described as belonging to arithmetic
or geometry, even though nothing is found in them that
comes close to the idea of proof as it was later prac-
ticed in mathematics at large. To the extent that any
justification is given, say, in the thousands of math-
ematical procedures found on clay tablets written in
cuneiform script, it is inductive or based on experi-
ence. The tablets repetitively show—without additional
explanation or attempts at general justifications—a
given procedure to be followed whenever one is pursu-
ing a certain type of result. Later on, in the context of
Chinese, Japanese, Mayan, or Hindu cultures, one again
finds important developments in fields naturally asso-
ciated with mathematics. The extent to which these cul-
tures pursued the idea of mathematical proof—a ques-
tion that is debated among historians to this day—
was undoubtedly not as great as it was in Greek tra-
dition, and it certainly did not take the specific forms
we typically associate with the latter. Should one nev-
ertheless say that these are instances of mathematical
knowledge, even though they are not justified on the
basis of some kind of general, deductive proof? If so,
then we cannot characterize mathematics as a body of
knowledge that is backed up by proofs, as suggested
above. However, this litmus test certainly provides a
useful criterion—one that we do not want to give up
too easily—for distinguishing mathematics from other
intellectual endeavors.

Without totally ignoring these important questions,
the present account focuses on a story that started,
at some point in the past, usually taken to be before
or around the fifth century B.C.E. in Greece, with the
realization that there was a distinctive body of claims,
mainly associated with numbers and with diagrams,
whose truth could be and needed to be vindicated in
a very special way—namely, by means of a general,
deductive argument, or “proof.” Exactly when and how
this story began is unclear. Equally unclear are the
direct historical sources of such a unique idea. Since the
emphasis on the use of logic and reason in constructing
an argument was well-entrenched in other spheres of
public life in ancient Greece—such as politics, rhetoric,
and law—much earlier than the fifth century B.C.E., it is
possible that it is in those domains that the origins of
mathematical proof are to be found.

The early stages of this story raise additional ques-
tions, both historical and methodological. For instance,
Thales of Miletus, the first mathematician known by
name (though he was also a philosopher and scientist),
is reported to have proved several geometric theorems,
such as, for instance, that the opposite angles between
two intersecting straight lines are equal, or that if two
vertices of a triangle are the endpoints of the diam-
eter of a circle and the third is any other point on
the circle then the triangle must be right angled. Even
if we were to accept such reports at face value, sev-
eral questions would immediately arise: in what sense
can it be asserted that Thales “proved” these results?
More specifically, what were Thales’s initial assump-
tions and what inference methods did he take to be
valid? We know very little about this. However, we do
know that, as a result of a complex historical process,
a certain corpus of knowledge eventually developed
that comprised known results, techniques employed,
and problems (both solved and yet requiring solution).
This corpus gradually also incorporated the regulatory
idea of proof: that is, the idea that some kind of gen-
eral argument, rather than an example (or even many
examples), was the necessary justification to be sought
in all cases. As part of this development, the idea of
proof came to be associated with strictly deductive argu-
ments, as opposed to, say, dialogic (meaning “negoti-
ated”) or “probabilistically inferred” truth. It is an inter-
esting and difficult historical question to establish why
this was the case, and one that we will not address here.

EUCLID’s [??] Elements was compiled some time
around the year 300 B.C.E. It stands out as the most suc-
cessful and comprehensive attempt of its kind to orga-



nize the basic concepts, results, proofs, and techniques
required by anyone wanting to master this increasingly
complex body of knowledge. Still, it is important to
stress that it was not the only such attempt within the
Hellenic world. This endeavor was not just a matter
of compilation, codification, and canonization, such as
one can find in any other evolving field of learning at
any point in time. Instead, the assertions it contained
were of two different kinds, and the distinction was
vitally important. On the one hand there were basic
assumptions, or axioms, and on the other there were
theorems, which were typically more elaborate state-
ments, together with accounts of how they followed
from the axioms—that is, proofs. The way that proof
was conceived and realized in the Elements became the
paradigm for centuries to come.

This article outlines the evolution of the idea of
deductive proof as initially shaped in the framework
of Euclidean-style mathematics and as subsequently
practiced in the mainstream mathematical culture of
ancient Greece, the Islamic world, Renaissance Europe,
early modern European science, and then in the nine-
teenth century and at the turn of the twentieth. The
main focus will be on geometry: other fields like arith-
metic and algebra will be treated mainly in relation to
it. This choice is amply justified by the subject mat-
ter itself. Indeed, much as mathematics stands out
among the sciences for the unique way in which it relies
on proof, so Euclidean-style geometry stood out—at
least until well into the seventeenth century—among
closely related disciplines such as arithmetic, algebra,
and trigonometry.

Results in these other disciplines, or indeed the
disciplines as a whole, were often regarded as fully
legitimate only when they had been provided with
a geometric (or geometric-like) foundation. However,
important developments in nineteenth-century math-
ematics, mainly in connection with the rise of NON-
EUCLIDEAN GEOMETRIES [?? §§?7-2?] and with problems
in the FOUNDATIONS OF ANALYSIS [??], eventually led to
a fundamental change of orientation, where arithmetic
(and eventually SET THEORY [??]) became the bastion
of certainty and clarity from which other mathemat-
ical disciplines, geometry included, drew their legiti-
macy and their clarity. (See THE CRISIS IN THE FOUNDA-
TIONS OF MATHEMATICS [??] for a detailed account of
this development.) And yet, even before this fundamen-
tal change, Euclidean-style proof was not the only way
in which mathematical proof was conceived, explored,
and practiced. By focusing mainly on geometry, the
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present account will necessarily leave out important
developments that eventually became the mainstream
of legitimate mathematical knowledge. To mention just
one important example in this regard, a fundamental
question that will not be pursued here is how the prin-
ciple of mathematical induction originated and devel-
oped, became accepted as a legitimate inference rule
of universal validity, and was finally codified as one of
the basic axioms of arithmetic in the late nineteenth
century. Moreover, the evolution of the notion of proof
involves many other dimensions that will not be treated
here, such as the development of the internal organi-
zation of mathematics into subdisciplines, as well as
the changing interrelations between mathematics and
its neighboring disciplines. At a different level, it is
related to how mathematics itself evolved as a socially
institutionalized enterprise: we shall not discuss inter-
esting questions about how proofs are produced, made
public, disseminated, criticized, and often rewritten
and improved.

2 Greek Mathematics

Euclid’s Elements is the paradigmatic work of Greek
mathematics, partly for what it has to say about the
basic concepts, tools, results, and problems of syn-
thetic geometry and arithmetic, but also for how it
regards the role of a mathematical proof and the form
that such a proof takes. All proofs appearing in the Ele-
ments have six parts and are accompanied by a dia-
gram. I illustrate this with the example of proposi-
tion 1.37. Euclid’s text is quoted here in the classical
translation of Sir Thomas Heath, and the meaning of
some terms differs from current usage. Thus, two tri-
angles are said to be “in the same parallels” if they have
the same height and both their bases are contained in
a single line, and any two figures are said to be “equal”
if their areas are equal. For the sake of explanation,
names of the parts of the proof have been added: these
do not appear in the original. The proof is illustrated
in figure 1.

Protasis (enunciation). Triangles which are on the
same base and in the same parallels are equal to one
another.

Ekthesis (setting out). Let ABC, DBC be triangles on
the same base BC and in the same parallels AD, BC.
Diorismos (definition of goal). I say that the triangle

ABC is equal to the triangle DBC.
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Figure 1 Proposition 1.37 of Euclid’s Elements.

Kataskeue (construction). Let AD be produced in both
directions to E, F; through B let BE be drawn parallel
to CA, and through C let CF be drawn parallel to BD.

Apodeixis (proof). Then each of the figures EBCA,
DBEFC is a parallelogram; and they are equal, for they
are on the same base BC and in the same parallels
BC, EF. Moreover the triangle ABC is half of the par-
allelogram EBCA, for the diameter AB bisects it; and
the triangle DBC is half of the parallelogram DBCF,
for the diameter DC bisects it. Therefore the triangle
ABC is equal to the triangle DBC.

Sumperasma (conclusion). Therefore triangles which
are on the same base and in the same parallels are
equal to one another.

This is an example of a proposition that states a prop-
erty of geometric figures. The Elements also includes
propositions that express a task to be carried out. An
example is proposition I.1: “On a given finite straight
line to construct an equilateral triangle.” The same six
parts of the proof and the diagram invariably appear
in propositions of this kind as well. This formal struc-
ture is also followed in all propositions appearing in
the three arithmetic books of the Elements and, most
importantly, all of them are always accompanied by a
diagram. Thus, for instance, consider proposition IX.35,
which in its original version reads as follows:

If as many numbers as we please be in continued pro-
portion, and there be subtracted from the second and
the last numbers equal to the first, then, as the excess
of the second is to the first, so will the excess of the
last be to all those before it.

This cumbersome formulation may prove incompre-
hensible on first reading. In more modern terms, an
equivalent to this theorem would state that, given a
geometric progression a,az,...,an+1, we have

(ans1 —ar) : (a1 +az +---+ay) = (az —ai) : ar.
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Figure 2 Proposition IX.35 of Euclid’s Elements.

This translation, however, fails to convey the spirit of
the original, in which no formal symbolic manipulation
is, or can be, made. More importantly, a modern alge-
braic proof fails to convey the ubiquity of diagrams in
Greek mathematical proofs, even where they are not
needed for a truly geometric construction. Indeed, the
accompanying diagram for proposition IX.35 is shown
as figure 2 and the first few lines of the proof are as
follows:

Let there be as many numbers as we please in contin-
ued proportion A, BC, D, EF, beginning from A as least
and let there be subtracted from BC and EF the num-
bers BG, FH, each equal to A; I say that, as GC is to A,
so is EH to A, BC, D. For let FK be made equal to BC and
FL equal to D....

This proposition and its proof provide good exam-
ples of the capabilities, as well as the limitations, of
ancient Greek practices of notation, and especially of
how they managed without a truly symbolic language.
In particular, they demonstrate that proofs were never
conceived by the Greeks, even ideally, as purely logical
constructs, but rather as specific kinds of arguments
that one applied to a diagram. The diagram was not
just a visual aid to the argumentation. Rather, through
the ekthesis part of the proof, it embodied the idea
referred to by the general character and formulation
of the proposition.

Together with the centrality of diagrams, the six-
part structure is also typical of most of Greek math-
ematics. The constructions and diagrams that typi-
cally appeared in Greek mathematical proofs were not
of an arbitrary kind, but what we identify today as
straightedge-and-compass constructions. The reason-
ing in the apodeixis part could be either a direct deduc-
tion or an argument by contradiction, but the result was
always known in advance and the proof was a means
to justify it. In addition, Greek geometric thinking,
and in particular Euclid-style geometric proofs, strictly
adhered to a principle of homogeneity. That is, magni-
tudes were only compared with, added to, or subtracted
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Figure 3 Proposition XII.2 of Euclid’s Elements.

from magnitudes of like kind—numbers, lengths, areas,
or volumes. (See NUMBERS [?? §??] for more about this.)

Of particular interest are those Greek proofs con-
cerned with lengths of curves, as well as with areas or
volumes enclosed by curvilinear shapes. Greek mathe-
maticians lacked a flexible notation capable of express-
ing the gradual approximation of curves by polygons
and an eventual passage to the infinite. Instead, they
devised a special kind of proof that involved what can
retrospectively be seen as an implicit passage to the
limit, but which did so in the framework of a purely geo-
metric proof and thus unmistakably followed the six-
part proof-scheme described above. This implicit pas-
sage to the infinite was based on the application of a
continuity principle, later associated with ARCHIMEDES
[??]. In Euclid’s formulation, for instance, the principle
states that, given two unequal magnitudes of the same
kind, A, B (be they two lengths, two areas, or two vol-
umes), with A greater than B, and if we subtract from
A a magnitude which is greater than A/2, and from
the remainder we subtract a magnitude that is greater
than its half, and if this process is iterated a sufficient
number of times, then we will eventually remain with a
magnitude that is smaller than B. Euclid used this prin-
ciple to prove, for instance, that the ratio of the areas
of two circles equals the ratio of the squares of their
diameters (XII.2). The method used, later known as the
exhaustion method, was based on a double contradic-
tion that became standard for many centuries to come.
This double contradiction is illustrated in figure 3, the
accompanying diagram to the proposition.

If the ratio of the square on BD to the square on FH
is not the same as the ratio of circle ABCD to circle
EFGH, then it must be the same as the ratio of circle
ABCD to an area S either larger or smaller than cir-
cle EFGH. The curvilinear figures are approximated by
polygons, since the continuity principle allows the dif-
ference between the inscribed polygon and the circle
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to be as close as desired (e.g., closer than the differ-
ence between S and EFGH). The “double contradiction”
is reached if one assumes that S is either smaller or
larger than EFGH.

Forms of proof and constructions other than those
mentioned so far are occasionally found in Greek math-
ematical texts. These include diagrams based on what
is assumed to be the synchronized motion of two lines
(e.g., the trisectrix, or Archimedes’ spiral), mechanical
devices of many sorts, or reasoning based on ideal-
ized mechanical considerations. However, the Euclid-
ean type of proof described above remained a model
to be followed wherever possible. There is a famous
Archimedes palimpsest that provides evidence of how
less canonical methods, drawing on mechanical consid-
erations (albeit of a highly idealized kind), were used to
deduce results about areas and volumes. However, even
this bears testimony to the primacy of the ideal model:
there is a letter from Archimedes to Eratosthenes in
which he displays the ingenuity of his mechanical meth-
ods but at the same time is at pains to stress their
heuristic character.

3 Islamic and Renaissance Mathematics

Just as Euclid is now considered to represent an entire
mainstream tradition of Greek mathematics, so AL-
KHWARIZMI [??] is regarded as a representative of
Islamic mathematics. There are two main traits of his
work that are relevant to the present account and
that became increasingly central to the development of
mathematics, starting with his works in the late eighth
century and continuing until the works of CARDANO [??]
in sixteenth-century Italy. These traits are a pervasive
“algebraization” of mathematical thinking, and a con-
tinued reliance on Euclidean-style geometric proof as
the main way of legitimizing the validity of mathemat-
ical knowledge in general and of algebraic reasoning in
mathematics in particular.

The prime example of this combination is found in
al-Khwarizmi’s seminal text al-Kitab al-mukhtasar fi
hisab al-jabr wa’l-muqgabala (“The compendious book
on calculation by completion and balancing”), where
he discusses the solutions of problems in which the
unknown length appears in combination with numbers
and squares (the side of which is an unknown). Since he
only envisages the possibility of positive “coefficients”
and positive rational solutions, al-Khwarizmi needs to
consider six different situations each of which requires
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Figure 4 Al-Khwarizmi's geometric justification
of the formula for a quadratic equation.

a different recipe for finding the unknown: the full-
grown idea of a general quadratic equation and an algo-
rithm to solve it in all cases does not appear in Islamic
mathematical texts. For instance, the problem “squares
and roots equal to numbers” (e.g., x2 + 10x = 39, in
modern notation) and the problem “roots and numbers
equal to squares” (e.g., 3x + 4 = x2) are considered
to be completely different ones, as are their solutions,
and accordingly al-Khwarizmi treats them separately.
In all cases, however, al-Khwarizmi proves the validity
of the method described by translating it into geomet-
ric terms and then relying on Euclid-like geometric the-
orems built around a specific diagram. It is noteworthy,
however, that the problems refer to specific numeri-
cal quantities associated with the magnitudes involved,
and these measured magnitudes refer to the accompa-
nying diagrams as well. In this way, al-Khwarizmi inter-
estingly departs from the Euclidean style of proof. Still,
the Greek principle of homogeneity is essentially pre-
served, as the three quantities usually involved in the
problem are all of the same kind, namely, areas.

Consider, for instance, the equation x2 + 10x =
39, which corresponds to the following problem of
al-Khwarizmi.

What is the square which combined with ten of its roots
will give a sum total of 39?

The recipe prescribes the following steps.

Take one-half of the roots [5] and multiply them by
itself [25]. Add this amount to 39 and obtain 64. Take
the square root of this, which is eight, subtract from it
half the roots, leaving three. The number three there-
fore represents one root of this square, which itself, of
course, is nine.

The justification is provided by figure 4.

Here ab represents the said square, which for us is
x2, and the rectangles c, d, e, f represent an area of
14—0x each, so that all of them together equal 10x, as
in the problem. Thus, the small squares in the cor-
ners represent an area of 6.25 each, and we can “com-
plete” the large square, being equal to 64, and whose
side is therefore 8, thus yielding the solution 3 for the
unknown.

Abu Kamil Shuja, just one generation after al-Khwar-
izmi, added force to this approach when he solved
additional problems while specifically relying on theo-
rems taken from the Elements, including the accompa-
nying diagrams, in order to justify his method of solu-
tion. The primacy of the Euclidean-type proof, which
was already accepted in geometry and arithmetic, thus
also became associated with the algebraic methods
that eventually turned into the main topic of inter-
est in Renaissance mathematics. Cardano’s 1545 Ars
Magna, the foremost example of this new trend, pre-
sented a complete treatment of the equations of third
and fourth degree. Although the algebraic line of rea-
soning that he adopted and developed became increas-
ingly abstract and formal, Cardano continued to justify
his arguments and methods of solution by reference to
Euclid-like geometric arguments based on diagrams.

4 Seventeenth-Century Mathematics

The next significant change in the conception of proof
appears in the seventeenth century. The most influen-
tial development of mathematics in this period was
the creation of the infinitesimal calculus simultane-
ously by NEWTON [??] and LEIBNIZ [??]. This momen-
tous development was the culmination of a process
that spanned most of the century, involving the intro-
duction and gradual improvement of important tech-
niques for determining areas and volumes, gradients
of tangents, and maxima and minima. These develop-
ments included the elaboration of traditional points of
view that went back to the Greek classics, as well as the
introduction of completely new ideas such as the “indi-
visibles,” whose status as a legitimate tool for math-
ematical proof was hotly debated. At the same time,
the algebraic techniques and approaches that Renais-
sance mathematicians continued to expand upon, fol-
lowing on from their Islamic predecessors, now gained
additional impetus and were gradually incorporated—
starting with the work of FERMAT [??] and DESCARTES
[??]—into the arsenal of tools available for proving geo-
metric results. Underlying these various trends were
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Figure 5 Diagram for Fermat’s proof
of the area under a hyperbola.

different conceptions and practices of mathematical
proof, which are briefly described and illustrated now.

Examples of how the classical Greek conception of
geometric proof was essentially followed but at the
same time fruitfully modified and expanded are found
in the work of Fermat, as can be seen in his calcula-
tion of the area enclosed by a generalized hyperbola
(in modern notation (y/a)™ = (x/b)" (m,n + 1)) and
its asymptotes.

The quadratic hyperbola (i.e., a figure represented by
y = 1/x?), for instance, is defined here in terms of a
purely geometric relationship on any two of its points,
namely, that the ratio between the squares built on the
abscissas equals the inverse ratio between the lengths
of the ordinates. In its original version it is expressed as
follows: AG? : AH? :: IH : EG (see figure 5). It should be
noticed that this is not an equation in the present sense
of the word, on which the standard symbolic manipula-
tions can be directly performed. Rather, this is a four-
term proportion to which the rules of Greek classical
mathematics apply. Also, the proof was entirely geo-
metric and indeed it essentially followed the Euclidean
style. Thus, if the segments AG, AH, AO, etc., are cho-
sen in continued proportion, then one can prove that
the rectangles EH, 10, NM, etc., are also in continued
proportion, and indeed that EH : IO x IO : NM =z - - - =
AH : AG.

Fermat made use of proposition IX.35 of the Elements
(mentioned above), which comprises an expression for
the sum of any number of quantities in a geometric
progression, namely (in more modern notation):

(ans1 —ay) : (a1 +az +---+ay) = (az —ay) : ar.

But at this point his proof takes an interesting turn.
He introduces the somewhat obscure concept of “ade-
quare,” which he found in the works of Diophantus,
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and which allows a kind of “approximate equality.”
Specifically, this idea allows him to bypass the cumber-
some procedure of double contradiction typically used
in Greek geometry as an implicit passage to the infi-
nite. A figure bounded by GE, by the horizontal asymp-
tote, and by the hyperbola will equal the infinite sum
of rectangles obtained when the rectangle EH “will van-
ish and will be reduced to nothing.” Further, proposi-
tion IX.35 implies that this sum equals the area of the
rectangle BG. Significantly, Fermat still chose to rely on
the authority of the ancients, hinting at the method of
double contradiction when he declared that this result
“would be easy to confirm by a more lengthy proof
carried out in the manner of Archimedes.”

Attempts to expand the accepted canon of geo-
metric proof eventually led to the more progressive
approaches associated with the idea of indivisibles, as
practiced by Cavalieri, Roberval, and Torricelli. This
is well illustrated by Torricelli's 1643 calculation of
the volume of the infinite body created by rotating
the hyperbola xy = k? around the y-axis, with val-
ues of x between 0 and a (as we would describe it in
modern terms).

The essential idea of indivisibles is that areas are con-
sidered to be sums, or collections, of infinitely many
line segments, and volumes are considered to be sums,
or collections, of infinitely many areas. In this exam-
ple, Torricelli calculated the volume of revolution by
considering it to be a sum of the curved surfaces of
an infinite collection of cylinders successively inscribed
within each other and having radii ranging from 0 to a.
In modern algebraic terms, the height of the inscribed
cylinder with radius x is k2/x, so the area of its curved
surfaceis 21rx (k?/x) = w(+/2k)?2, a constant value that
is independent of x and equal to the area of a circle
of radius +/2k. Thus, in Torricelli’s approach based on
the geometry of indivisibles, the collection of all sur-
faces that, when taken together, comprise the infinite
body can be equated to a collection of circles with area
21k2, one for each x between 0 and a, or equivalently
to a cylinder of volume 21k?a.

The rules of Euclid-like geometric proof were com-
pletely contravened in proofs of this kind and this
made them unacceptable in the eyes of many. On the
other hand, their fruitfulness was highly appealing,
especially in cases like this one in which an infinite body
was shown to have a finite volume, a result which Torri-
celli himself found extremely surprising. Both support-
ers and detractors alike, however, realized that tech-
niques of this kind might lead to contradictions and
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inaccurate results. By the eighteenth century, with the
accelerated development of the infinitesimal calculus
and its associated techniques and concepts, techniques
based on indivisibles had essentially disappeared.

The limits set by the classical paradigm of Euclid-
ean geometric proof were then transgressed in a dif-
ferent direction by the all-embracing algebraization of
geometry at the hands of Descartes. The fundamen-
tal step undertaken by Descartes was to introduce unit
lengths as a key element in the diagrams used in geo-
metric proofs. The radical innovation implied by this
step, allowing the hitherto nonexistent possibility of
defining operations with line segments, was explicitly
stressed by Descartes in La Géométrie in 1637:

Just as arithmetic consists of only four or five oper-
ations, namely addition, subtraction, multiplication,
division, and the extraction of roots, which may be
considered a kind of division, so in geometry, to find
required lines it is merely necessary to add or subtract
other lines; or else, taking one line, which I shall call the
unit in order to relate it as closely as possible to num-
bers, and which can in general be chosen arbitrarily,
and having given two other lines, to find a fourth line
which shall be to one of the given lines as the other is to
the unit (which is the same as multiplication); or again,
to find a fourth line which is to one of the given lines as
the unit is to the other (which is equivalent to division);
or, finally, to find one, two, or several mean proportion-
als between the unit and some other line (which is the
same as extracting the square root, cube root, etc., of
the given line).

Thus, for instance, given two segments BD, BE, the
division of their lengths is represented by BC in figure 6,
in which AB represents the unit length.

Although the proof was Euclid-like in appearance
(because of the diagram and the use of the theory of
similar triangles), the introduction of the unit length
and its use for defining the operations with segments
set it radically apart and opened completely new hori-
zons for geometric proofs. Not only had measurements
of length been absent from Euclidean-style proofs thus
far, but also, as a consequence of the very existence
of these operations, the essential dimensionality tra-
ditionally associated with geometric theorems lost its
significance. Descartes used expressions such as a — b,
a/b, a?, b3, and their roots, but he stressed that
they should all be understood as “only simple lines,
which, however, I name squares, cubes, etc., so that I
make use of the terms employed in algebra.” With the
removal of dimensionality, the requirement of homo-
geneity also became unnecessary. Unlike his predeces-
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Figure 6 Descartes’s geometric calculation
of the division of two given segments.

sors, who handled magnitudes only when they had a
direct geometric significance, Descartes could not see
any problem in forming an expression such as a?b% —b
and then extracting its cube root. In order to do so, he
said “we must consider the quantity a?b? divided once
by the unit, and the quantity b multiplied twice by the
unit.” Sentences of this kind would be simply incompre-
hensible to Greek geometers, as well as to their Islamic
and Renaissance followers.

This algebraization of geometry, and particularly the
newly created possibility of proving geometric facts
via algebraic procedures, was strongly related to the
recent consolidation of the idea of an algebraic equa-
tion, seen as an autonomous mathematical entity, for
which formal rules of manipulation were well-known
and could be systematically applied. This idea reached
full maturity in the hands of VIETE [??] only around
1591. But not all mathematicians in the seventeenth
century saw the important developments associated
with algebraic thinking either as a direction to be nat-
urally adopted or as a clear sign of progress in the lat-
ter discipline. A prominent opponent of any attempt
to deviate from the classical Euclidean-style approach
in geometry was none other than NEWTON [??], who,
in the Arithmetica Universalis (1707), was emphatic in
expressing his views:

Equations are expressions of arithmetic computation
and properly have no place in geometry, except in
so far as truly geometrical quantities (lines, surfaces,
solids and proportions) are thereby shown equal, some
to others. Multiplications, divisions, and computations
of that kind have recently been introduced into geom-
etry, unadvisedly and against the first principle of this
science.... Therefore these two sciences ought not to
be confounded, and recent generations by confounding
them have lost that simplicity in which all geometrical
elegance consists.



Newton’s Principia bears witness to the fact that
statements like this one were far from mere lip ser-
vice, as Newton consistently preferred Euclidean-style
proofs, considering them to be the correct language for
presenting his new physics and for bestowing it with
the highest degree of certainty. He used his own cal-
culus only where strictly necessary, and barred algebra
from his treatise entirely.

5 Geometry and Proof in
Eighteenth-Century Mathematics

Mathematical analysis became the primary focus of
mathematicians in the eighteenth century. Questions
relating to the foundations of analysis arose immedi-
ately after the calculus began to be developed and were
not settled until the late nineteenth century. To a con-
siderable extent these questions were about the nature
of legitimate mathematical proof, and debates about
them played an important role in undermining the long-
undisputed status of geometry as the basis for math-
ematical certainty and bestowing this status on arith-
metic instead. The first important stage in this process
was EULER’s [??] reformulation of the calculus. Once
separated from its purely geometric roots, the calculus
came to be centered on the algebraically oriented con-
cept of function. This trend for favoring algebra over
geometry was given further impetus by Euler’s succes-
sors. D’ALEMBERT [??], for instance, associated math-
ematical certainty above all with algebra—because of
its higher degree of generality and abstraction—and
only subsequently with geometry and mechanics. This
was a clear departure from the typical views of Newton
and of his contemporaries. The trend reached a peak
and was transformed into a well-conceived program in
the hands of LAGRANGE [??], who in the preface to his
1788 Méchanique Analitique famously expressed a rad-
ical view about how one could achieve certainty in the
mathematical sciences while distancing oneself from
geometry. He wrote as follows:

One will not find figures in this work. The methods
that I expound require neither constructions, nor geo-
metrical or mechanical arguments, but only algebraic
operations, subject to a regular and uniform course.

The details of these developments are beyond the scope
of this article. What is important to stress, however, is
that in spite of their very considerable impact, the basic
conceptions of proof in the more mainstream realm of
geometry did not change very much during the eigh-
teenth century. An illuminating perspective on these
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conceptions is offered by the views of contemporary
philosophers, especially Immanuel Kant.

Kant had a very profound knowledge of contem-
porary science, and particularly of mathematics. A
philosophical discussion of his views on mathematical
knowledge and proof need not concern us here. How-
ever, given his acquaintance with contemporary con-
ceptions, they do provide an insightful historical per-
spective on proof as it was understood at the time. Of
particular interest is the contrast he draws between
a philosophical argument, on the one hand, and a
geometric proof, on the other. Whereas the former
deals with general concepts, the latter deals with con-
crete, yet nonempirical, concepts, by reference to “visu-
alizable intuitions” (Anschauung). This difference is
epitomized in the following, famous passage from his
Critique of Pure Reason.

Suppose a philosopher be given the concept of a tri-
angle and he is left to find out, in his own way, what
relation the sum of its angles bears to a right angle.
He has nothing but the concept of a figure enclosed by
three straight lines, and possessing three angles. How-
ever long he meditates on this concept, he will never
produce anything new. He can analyze and clarify the
concept of a straight line or of an angle or of the num-
ber three, but he can never arrive at any properties not
already contained in these concepts. Now let the geo-
metrician take up these questions. He at once begins by
constructing a triangle. Since he knows that the sum of
two right angles is exactly equal to the sum of all the
adjacent angles which can be constructed from a single
point on a straight line, he prolongs one side of his tri-
angle and obtains two adjacent angles, which together
are equal to two right angles. He then divides the exter-
nal angle by drawing a line parallel to the opposite side
of the triangle, and observes that he has thus obtained
an external adjacent angle which is equal to an internal
angle—and so on. In this fashion, through a chain of
inferences guided throughout by intuition, he arrives
at a fully evident and universally valid solution of the
problem.

In a nutshell, then, for Kant the nature of mathemat-
ical proof that sets it apart from other kinds of deduc-
tive argumentation (like philosophy) lies in the central-
ity of the diagrams and the role that they play. As in the
Elements, this diagram is not just a heuristic guide for
what is no more than abstract reasoning, but rather an
“intuition,” a singular embodiment of the mathematical
idea that is clearly located not only in space, but rather
in space and time. In fact,
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I cannot represent to myself a line, however small, with-
out drawing it in thought, that is gradually generat-
ing all its parts from a point. Only in this way can the
intuition be obtained.

This role played by diagrams as “visualizable intu-
itions” is what provides, for Kant, the explanation of
why geometry is not just an empirical science, but also
not just a huge tautology devoid of any synthetic con-
tent. According to him, geometric proof is constrained
by logic but it is much more than just a purely logi-
cal analysis of the terms involved. This view was at the
heart of a novel philosophical analysis whose starting
point was the then-entrenched conception of what a
mathematical proof is.

6 Nineteenth-Century Mathematics and
the Formal Conception of Proof

The nineteenth century was full of important develop-
ments in geometry and other parts of mathematics, not
just of the methods but also of the aims of the vari-
ous subdisciplines. Logic, as a field of knowledge, also
underwent significant changes and a gradual mathema-
tization that entirely transformed its scope and meth-
ods. Consequently, by the end of the century the con-
ception of proof and its role in mathematics had also
been deeply transformed.

In Gottingen in 1854 RIEMANN [??] gave his sem-
inal talk “On the hypotheses which lie at the foun-
dations of geometry.” At around the same time, the
works of BOLYAI [??] and LOBACHEVSKII [??] on non-
Euclidean geometry, as well as the related ideas of
GAUSS [??], all dating from the 1830s, began to be more
generally known. The existence of coherent, alterna-
tive geometries brought about a pressing need for the
most basic, longstanding beliefs about the essence of
geometric knowledge, including the role of proof and
mathematical rigor, to be revised. Of even greater sig-
nificance in this regard was the renewed interest in
PROJECTIVE GEOMETRY [?? §??], which became a very
active field of research with its own open research ques-
tions and foundational issues after the publication of
Jean Poncelet’s 1822 treatise. The addition of projec-
tive geometry to the many other possible geometric
perspectives prompted a variety of attempts at unifi-
cation and classification, the most significant of which
were those based on group-theoretic ideas. Particularly
notable were those of KLEIN [??] and LIE [??] in the
1870s. In 1882, Moritz Pasch published an influential
treatise on projective geometry devoted to a systematic

exploration of its axiomatic foundations and the inter-
relationships among its fundamental theorems. Pasch’s
book also attempted to close the many logical gaps that
had been found in Euclidean geometry over the years.
More systematically than any of his fellow nineteenth-
century mathematicians, Pasch emphasized that all
geometric results should be obtained from axioms by
strict logical deduction, without relying on analytical
means, and above all without appeal to diagrams or to
properties of the figures involved. Thus, although in
some ways he was consciously reverting to the canons
of Euclid-like proof (which by then were somewhat loos-
ened), his attitude toward diagrams was fundamentally
different. Aware of the potential limitations of visualiz-
ing diagrams (and perhaps their misleading influence)
he put a much greater emphasis on the pure logical
structure of the proof than his predecessors had. Nev-
ertheless, he was not led to an outright formalist view
of geometry and geometric proof. Rather, he consis-
tently adopted an empirical approach to the origins and
meaning of geometry and fell short of claiming that
diagrams were for heuristic use only:

The basic propositions [of geometry] cannot be under-
stood without corresponding drawings; they express
what has been observed from certain, very simple facts.
The theorems are not founded on observations, but
rather, they are proved. Every inference performed dur-
ing a deduction must find confirmation in a drawing,
yet it is not justified by a drawing but from a certain
preceding statement (or a definition).

Pasch’s work definitely contributed to diagrams los-
ing their central status in geometric proofs in favor
of purely deductive relations, but it did not directly
lead to a thorough revision of the status of the axioms
of geometry, or to a change in the conception that
geometry deals essentially with the study of our spa-
tial, visualizable intuition (in the sense of Anschauung).
The all-important nineteenth-century developments in
geometry produced significant changes in the concep-
tion of proof only under the combined influence of
additional factors.

Mathematical analysis continued to be a primary field
of research, and the study of its foundations became
increasingly identified with arithmetic, rather than geo-
metric, rigor. This shift was provoked by the works
of mathematicians like CAUCHY [??], WEIERSTRASS [??],
CANTOR [??], and DEDEKIND [??], which aimed at elim-
inating intuitive arguments and concepts in favor of
ever more elementary statements and definitions. (In
fact, it was not until the work of Dedekind on the
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foundations of arithmetic, in the last third of the cen-
tury, that the rigorous formulation pursued in these
works was given any kind of axiomatic underpin-
ning.) The idea of investigating the axiomatic basis of
mathematical theories, whether geometry, algebra, or
arithmetic, and of exploring alternative possible sys-
tems of postulates was indeed pursued during the
nineteenth century by mathematicians such as George
Peacock, Charles Babbage, John Herschel, and, in a
different geographical and mathematical context, Her-
mann Grassmann. But such investigations were the
exception rather than the rule, and they had only a
fairly limited role in shaping a new conception of proof
in analysis and geometry.

One major turning point, where the above trends
combined to produce a new kind of approach to proof,
is to be found in the works of GIUSEPPE PEANO [??]
and his Italian followers. Peano’s mainstream activities
were as a competent analyst, but he was also interested
in artificial languages, and particularly in developing
an artificial language that would allow a completely
formal treatment of mathematical proofs. In 1889 his
successful application of such a conceptual language
to arithmetic yielded his famous POSTULATES FOR THE
NATURAL NUMBERS [??]. Pasch’s systems of axioms for
projective geometry posed a challenge to Peano’s arti-
ficial language, and he set out to investigate the rela-
tionship between the logical and the geometric terms
involved in the deductive structure of geometry. In this
context he introduced the idea of an independent set
of axioms, and applied this concept to his own system
of axioms for projective geometry, which were a slight
modification of Pasch’s. This view did not lead Peano to
a formalistic conception of proof, and he still conceived
geometry in terms very similar to his predecessors:

Anyone is allowed to take a hypothesis and develop
its logical consequences. However, if one wants to
give this work the name of geometry it is necessary
that such hypotheses or postulates express the result
of simple and elementary observations of physical
figures.

Under the influence of Peano, Mario Pieri developed
a symbolism with which to handle abstract-formal the-
ories. Unlike Peano and Pasch, Pieri consistently pro-
moted the idea of geometry as a purely logical sys-
tem, where theorems are deduced from hypothetical
premises and where the basic terms are completely
detached from any empirical or intuitive significance.
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A new chapter in the history of geometry and of
proof was opened at the end of the nineteenth cen-
tury with the publication of HILBERT’S [??] Grundlagen
der Geometrie, a work that synthesized and brought to
completion the various trends of geometric research
described above. Hilbert was able to achieve a com-
prehensive analysis of the logical interrelations among
the fundamental results of projective geometry, such
as the theorems of Desargues and Pappus, while pay-
ing particular attention to the role of continuity con-
siderations within their proofs. His analysis was based
on the introduction of a generalized analytic geometry,
in which the coordinates may be taken from a vari-
ety of different NUMBER FIELDS [??], rather than from
the real numbers alone. This approach created a purely
synthetic arithmetization of any given type of geom-
etry, and thus helped to clarify the logical structure
of Euclidean geometry as a deductive system. It also
clarified the relationship between Euclidean geometry
and the various other kinds of known geometries—non-
Euclidean, projective, or non-Archimedean. This focus
on logic implied, among other things, that diagrams
should be relegated to a merely heuristic role. In fact,
although diagrams still appear in many proofs in the
Grundlagen, the entire purpose of the logical analysis
is to avoid being misled by diagrams. Proofs, and partic-
ularly geometric proofs, have thus become purely logi-
cal arguments, rather than arguments about diagrams.
And at the same time, the essence and the role of the
axioms from which the derivations in question start
also underwent a dramatic change.

Following Pasch’s lead, Hilbert introduced a new sys-
tem of axioms for geometry that attempted to close
the logical gaps inherent in earlier systems. These
axioms were of five kinds—axioms of incidence, of
order, of congruence, of parallels, and of continuity—
each of which expressed a particular way in which
spatial intuition manifests itself in our understanding.
They were formulated for three fundamental kinds of
object: points, lines, and planes. These remained unde-
fined, and the system of axioms was meant to provide
an implicit definition of them. In other words, rather
than defining points or lines at the outset and then pos-
tulating axioms that are assumed to be valid for them,
a point and a line were not directly defined, except as
entities that satisfy the axioms postulated by the sys-
tem. Further, Hilbert demanded that the axioms in a
system of this kind should be mutually independent,
and introduced a method for checking that this demand
is fulfilled; in order to do so, he constructed models
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of geometries that fail to satisfy a given axiom of the
system but satisfy all the others. Hilbert also required
that the system be consistent, and that the consistency
of geometry could be made to depend, in his system,
on that of arithmetic. He initially assumed that prov-
ing the consistency of arithmetic would not present a
major obstacle and it was a long time before he realized
that this was not the case. Two additional requirements
that Hilbert initially introduced for axiomatic systems
were simplicity and completeness. Simplicity meant, in
essence, that an axiom should not contain more than
“a single idea.” The demand that every axiom in a sys-
tem be “simple,” however, was never clearly defined or
systematically pursued in subsequent works of Hilbert
or any of his successors. The last requirement, com-
pleteness, meant for Hilbert in 1900 that any adequate
axiomatization of a mathematical domain should allow
for a derivation of all the known theorems of the disci-
pline in question. Hilbert claimed that his axioms would
indeed vyield all the known results of Euclidean geom-
etry, but of course this was not a property that he could
formally prove. In fact, since this property of “com-
pleteness” cannot be formally checked for any given
axiomatic system, it did not become one of the stan-
dard requirements of an axiomatic system. It is impor-
tant to note that the concept of completeness used by
Hilbert in 1900 is completely different from the cur-
rently accepted, model-theoretical one that appeared
much later. The latter amounts to the requirement that
in a given axiomatic system every true statement, be it
known or unknown, should be provable.

The use of undefined concepts and the concomitant
conception of axioms as implicit definitions gave enor-
mous impetus to the view of geometry as a purely logi-
cal system, such as Pieri had devised it, and eventually
transformed the very idea of truth and proof in mathe-
matics. Hilbert claimed on various occasions—echoing
an idea of Dedekind—that, in his system, “points, lines,
and planes” could be substituted by “chairs, tables, and
beer mugs,” without thereby affecting in any sense the
logical structure of the theory. Moreover, in the light
of discussions about set-theoretical paradoxes, Hilbert
strongly emphasized the view that the logical consis-
tency of a concept implicitly defined by axioms was the
essence of mathematical existence. Under the influence
of these views, of the new methodological tools intro-
duced by Hilbert, and of the successful overview of the
foundations of geometry thus achieved, many mathe-
maticians went on to promote new views of mathemat-
ics and new mathematical activities that in many senses
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went beyond the views embodied in Hilbert’s approach.
On the one hand, a trend that thrived in the United
States at the beginning of the twentieth century, led by
Eliakim H. Moore, turned the study of systems of postu-
lates into a mathematical field in its own right, indepen-
dent of direct interest in the field of research defined
by the systems in question. For instance, these math-
ematicians defined the minimal set of independent
postulates for groups, fields, projective geometry, etc.,
without then proceeding to investigate of any of these
individual disciplines. On the other hand, prominent
mathematicians started to adopt and develop increas-
ingly formalistic views of proof and of mathematical
truth, and began applying them in a growing number
of mathematical fields. The work of the radically mod-
ernist mathematician FELIX HAUSDORFF [??] provides
important examples of this trend, as he was among
the first to consistently associate Hilbert’s achievement
with a new, formalistic view of geometry. In 1904, for
instance, he wrote:

In all philosophical debates since Kant, mathematics,
or at least geometry, has always been treated as het-
eronomous, as dependent on some external instance
of what we could call, for want of a better term, intu-
ition, be it pure or empirical, subjective or scientifically
amended, innate or acquired. The most important and
fundamental task of modern mathematics has been to
set itself free from this dependency, to fight its way
through from heteronomy to autonomy.

Hilbert himself would pursue such a point of view
around 1918, when he engaged in the debates about the
consistency of arithmetic and formulated his “finitist”
program. This program did indeed adopt a strongly for-
malistic view, but it did so with the restricted aim of
solving this particular problem. It is therefore impor-
tant to stress that Hilbert’s conceptions of geometry
were, and remained, essentially empiricist and that he
never regarded his axiomatic analysis of geometry as
part of an overall formalistic conception of mathemat-
ics. He considered the axiomatic approach as a tool for
the conceptual clarification of existing, well-elaborated
theories, of which geometry provided only the most
prominent example.

The implication of Hilbert’'s axiomatic approach for
the concept of proof and of truth in mathematics pro-
voked strong reactions from some mathematicians,
and prominently so from FREGE [??]. Frege’s views are
closely related to the changing status of logic at the
turn of the twentieth century and its gradual process of
mathematization and formalization. This process was
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an outcome of the successive efforts through the nine-
teenth century of BOOLE [??], DE MORGAN [??], Grass-
mann, Charles S. Peirce, and Ernst Schroder at formulat-
ing an algebra of logic. The most significant step toward
a new, formal conception of logic, however, came with
the increased understanding of the role of the logical
QUANTIFIERS [?? §??] (universal, V, and existential, 3)
in the process of formulating a modern mathematical
proof. This understanding emerged in an informal, but
increasingly clear, fashion as part of the process of the
rigorization of analysis and the distancing from visual
intuition, especially at the hands of Cauchy, BOLZANO
[??], and Weierstrass. It was formally defined and sys-
tematically codified for the first time by Frege in his
1879 Begriffsschrift. Frege’s system, as well as simi-
lar ones proposed later by Peano and by RUSSELL [??],
brought to the fore a clear distinction between propo-
sitional connectives and quantifiers, as well as between
logical symbols and algebraic or arithmetic ones.

Frege formulated the idea of a formal system, in
which one defines in advance all the allowable sym-
bols, all the rules that produce well-formed formulas,
all axioms (i.e., certain preselected, well-formed formu-
las), and all the rules of inference. In such systems
any deduction can be checked syntactically)—in other
words, by purely symbolic means. On the basis of such
systems Frege aimed to produce theories with no log-
ical gaps in their proofs. This would apply not only to
analysis and to its arithmetic foundation—the mathe-
matical fields that provided the original motivation for
his work—but also to the new systems of geometry that
were evolving at the time. On the other hand, in Frege’s
view the axioms of mathematical theories—even if they
appear in the formal system merely as well-formed
formulas—embody truths about the world. This is pre-
cisely the source of his criticism of Hilbert. It is the
truth of the axioms, asserted Frege, that certifies their
consistency, rather than the other way around, as
Hilbert suggested.

We thus see how foundational research in two sep-
arate fields—geometry and analysis—was inspired by
different methodologies and philosophical outlooks,
but converged at the turn of the twentieth century
to create an entirely new conception of mathematical
proof. In this conception a mathematical proof is seen
as a purely logical construct validated in purely syntac-
tic terms, independently of any visualization through
diagrams. This conception has dominated mathematics
ever since.
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Epilogue: Proof in the Twentieth Century

The new notion of proof that stabilized at the beginning
of the twentieth century provided an idealized model—
broadly accepted to this day—of what should consti-
tute a valid mathematical argument. To be sure, actual
proofs devised and published by mathematicians since
that time are seldom presented as fully formalized
texts. They typically present a clearly articulated argu-
ment in a language that is precise enough to convince
the reader that it could—in principle, and perhaps with
straightforward (if sustained) effort—be turned into
one. Throughout the decades, however, some limita-
tions of this dominant idea have gradually emerged
and alternative conceptions of what should count as a
valid mathematical argument have become increasingly
accepted as part of current mathematical practice.

The attempt to pursue this idea systematically to its
full extent led, early on and very unexpectedly, to a
serious difficulty with the notion of a proof as a com-
pletely formalized and purely syntactic deductive argu-
ment. In the early 1920s, Hilbert and his collaborators
developed a fully fledged mathematical theory whose
subject matter was “proof,” considered as an object of
study in itself. This theory, which presupposed the for-
mal conception of proof, arose as part of an ambitious
program for providing a direct, finitistic consistency
proof of arithmetic represented as a formalized sys-
tem. Hilbert asserted that, just as the physicist exam-
ines the physical apparatus with which he carries out
his experiments and the philosopher engages in a cri-
tique of reason, so the mathematician should be able
to analyze mathematical proofs and do so strictly by
mathematical means. About a decade after the pro-
gram was launched, GODEL [??] came up with his aston-
ishing INCOMPLETENESS THEOREM [??], which famously
showed that “mathematical truth” and “provability”
were not one and the same thing. Indeed, in any consis-
tent, sufficiently rich axiomatic system (including the
systems typically used by mathematicians) there are
true mathematical statements that cannot be proved.
Godel’s work implied that Hilbert’s finitistic program
was too optimistic, but at the same time it also made
clear the deep mathematical insights that could be
obtained from Hilbert’s proof theory.

A closely related development was the emergence of
proofs that certain important mathematical statements
were undecidable. Interestingly, these seemingly nega-
tive results have given rise to new ideas about the legit-
imate grounds for establishing the truth of such state-
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ments. For instance, in 1963 Paul Cohen established
that the CONTINUUM HYPOTHESIS [?? §2?] can be neither
proved nor disproved in the usual systems of axioms
for set theory. Most mathematicians simply accept this
idea and regard the problem as solved (even if not in
the way that was originally expected), but some contem-
porary set theorists, notably Hugh Woodin, maintain
that there are good reasons to believe that the hypoth-
esis is false. The strategy they follow in order to justify
this assertion is fundamentally different from the for-
mal notion of proof: they devise new axioms, demon-
strate that these axioms have very desirable proper-
ties, argue that they should therefore be accepted, and
then show that they imply the negation of the contin-
uum hypothesis. (See SET THEORY [?? §?7] for further
discussion.)

A second important challenge came from the ever-
increasing length of significant proofs appearing in
various mathematical domains. A prominent example
was the CLASSIFICATION THEOREM FOR FINITE SIMPLE
GROUPS [??], whose proof was worked out in many sep-
arate parts by a large numbers of mathematicians. The
resulting arguments, if put together, would reach about
ten thousand pages, and errors have been found since
the announcement in the early 1980s that the proof was
complete. It has always been relatively straightforward
to fix the errors and the theorem is indeed accepted
and used by group theorists. Nevertheless, the notion
of a proof that is too long for a single human being to
check is a challenge to our conception of when a proof
should be accepted as such. The more recent, very con-
spicuous cases of FERMAT’S LAST THEOREM [??] and
THE POINCARE CONJECTURE [??] were hard to survey
for different reasons: not only were they long (though
nowhere near as long as the classification of finite sim-
ple groups), but they were also very difficult. In both
cases there was a significant interval between the first
announcement of the proofs and their complete accep-
tance by the mathematical community because check-
ing them required enormous efforts by the very few
people qualified to do so. There is no controversy about
either of these two breakthroughs, but they do raise an
interesting sociological problem: if somebody claims to
have proved a theorem and nobody else is prepared
to check it carefully (perhaps because, unlike the two
theorems just mentioned, this one is not important
enough for another mathematician to be prepared to
spend the time that it would take), then what is the
status of the theorem?
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Proofs based on probabilistic considerations have
also appeared in various mathematical domains, in-
cluding number theory, group theory, and combina-
torics. It is sometimes possible to prove mathematical
statements (see, for example, the discussion of random
primality testing in COMPUTATIONAL NUMBER THEORY
[?? §77]), not with complete certainty, but in such a way
that the probability of error is tiny—at most one in a
trillion, say. In such cases, we may not have a formal
proof, but the chances that we are mistaken in consid-
ering the given statement to be true are probably lower
than, say, the chance that there is a significant mistake
in one of the lengthy proofs mentioned above.

Another challenge has come from the introduction
of computer-assisted methods of proof. For instance,
in 1976 Kenneth Appel and Wolfgang Haken settled
a famous old problem by proving the FOUR-COLOR
THEOREM [??]. Their proof involved the checking of a
huge number of different map configurations, which
they did with the help of a computer. Initially, this
raised debates about the legitimacy of their proof but
it quickly became accepted and there are now sev-
eral proofs of this kind. Some mathematicians even
believe that computer-assisted and, more importantly,
computer-generated proofs are the future of the entire
discipline. Under this (currently minority) view, our
present views about what counts as an acceptable
mathematical proof will soon become obsolete.

A last point to stress is that many branches of math-
ematics now contain conjectures that seem to be both
fundamentally important and out of reach for the fore-
seeable future. Mathematicians persuaded of the truth
of such conjectures increasingly undertake the sys-
tematic study of their consequences, assuming that an
acceptable proof will one day appear (or at least that the
conjecture is true). Such conditional results are pub-
lished in leading mathematical journals and doctoral
degrees are routinely awarded for them.

These trends all raise interesting questions about ex-
isting conceptions of legitimate mathematical proofs,
the status of truth in mathematics, and the relationship
between “pure” and “applied” fields. The formal notion
of a proof as a string of symbols that obeys certain
syntactical rules continues to provide an ideal model
for the principles that underlie what most mathemati-
cians see as the essence of their discipline. It allows
far-reaching mathematical analysis of the power of cer-
tain axiomatic systems, but at the same time it falls
short of explaining the changing ways in which mathe-
maticians decide what kinds of arguments they are will-
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ing to accept as legitimate in their actual professional
practice.

Acknowledgments. I thank José Ferreiros and Reviel Netz
for useful comments on previous versions of this text.

Further Reading

Bos, H. 2001. Redefining Geometrical Exactness. Descartes’
Transformation of the Early Modern Concept of Construc-
tion. New York: Springer.

Ferreiros, J. 2000. Labyrinth of Thought. A History of Set
Theory and Its Role in Modern Mathematics. Boston, MA:
Birkhauser.

Grattan-Guinness, 1. 2000. The Search for Mathematical
Roots, 1870-1940: Logics, Set Theories and the Foun-
dations of Mathematics from Cantor through Russell to
Godel. Princeton, NJ: Princeton University Press.

Netz, R. 1999. The Shaping of Deduction in Greek Mathemat-
ics: A Study in Cognitive History. Cambridge: Cambridge
University Press.

Rashed, R. 1994. The Development of Arabic Mathematics:
Between Arithmetic and Algebra, translated by A. F. W.
Armstrong. Dordrecht: Kluwer.

PRINCETON COMPANION TO MATHEMATICS PROOF



